

EQS Building Bearing System

Design Questionnaire

For a fillable version online, please visit rjwatson.com, hover over the services tab at the top, and click on design services.

Project

Name & Contract Number:	
Owner:	
Consultant:	
Contact Information	
Name:	
Phone:	
Email:	
EQS Bearing Quantity:	
Estimated Project Bid Date:	

Structure

Superstructure Information	
Type (Steel or Concrete):	
Strength (Yield or Compressive (f'c)):	
Beam/Girder Flange Dimensions:	
Span Length(s):	
Slope at Bearing Locations:	
Substructure Information	
Type (Steel or Concrete):	
Strength (Yield or Compressive (f'c)):	
Bearing Pedestal Dimensions:	
Bearing Anchorage:	
Materials:	
Coating:	
Embed Depth:	
Existing Bearing Heights (If Required to Match Heights):	

EQS Building Bearing System

Design Questionnaire

Design

Design Goal (Rehab, Replace, New Design, etc.): Design Method (ASD, LFD, or LRFD):

Seismic Design Data

Response Acceleration at Period of 1-sec (S₁): Site Class Coefficient (F_V):

Seismic Design Category:

Site Specific Response Spectrum (if applicable): Design Temperature Range:

Specifications (including dates/editions)

AASHTO, AISC, ASCE, etc. Standard and/or Guide Spec.: State Standard:

Bearing Materials

Type of Steel:

Coating (paint, galvanize, metalize):

Testing

Specifications (including dates/editions)

AASHTO, AISC, ASCE, etc. Standard and/or Guide Spec.: State Standard:

Special Testing Requirements (if applicable):

Please fill in design requirement table on next page.

EQS Building Bearing System

Design Questionnaire

Design Requirements

Units: Load: Displacement: Rotation:	_		Substructure Location(s)	Substructure Location(s)	Substructure Location(s)	Substructure Location(s)
Isolation Bearing Qua	antity:					
Load (Denote: Unfactored or Factored	Axial –	Dead:				
		Live:				
		Other:				
		Total:				
	Net Uplift (If Applicable):					
Rotation (+/-) (Denote: Unfactored or Factored)	Due to all Applicable Loads:					
	Due to Fab. & Const. Tol.:					
	Total:					
Service Forces (Denote Unfactored or Factored)	Wind:					
	Snow:					
	Other:					
Max Seismic Force Goal (per bearing)	Longitudinal:					
	Transverse:					
Max Seismic	Longitudinal:					
Displacement Goal (across bearing)	Transverse:					
Displacement (+/-)	Longitudinal	Thermal, Creep, Shrink:				
	Transverse	Thermal:				
Method of attachment to superstructure :						
Method of attachme	Method of attachment to substructure:					

If any of the above information is not known at this time, typical assumptions can be used for an estimate. For example, a typical design rotation is \pm 0.02 radians.

Please fill out and email this form to sales@rjwatson.com